MTH Discrete Mathematics Spring 2018, 1-2

© copyright Ayman Badawi 2018

Quiz I: MTH 213, Spring 2018

Ayman Badawi

QUESTION 1. Find gcd(44, 186). Then find $k_1, k_2 \in Z$ such that $44k_1 + 186k_2 = gcd(44, 186)$

$$2 = 10 - 4 \times 2$$

= 10 - (44 - 10 × 4)×2
= 10 - (44 × 2 - 10 × 8)
= -44 × 2 + 10 × 9
= -2×44 + (186 - 44 × 4)×9
= -2×44 + 186 × 9 - 36×44
= -38×44 + 186×9
×2 = -38×44 + 186×9

QUESTION 2. Solve over Z, $6x = 9 \pmod{15}$

$$G_{22} = 9 \quad Z_{15}$$

$$g_{cd} \quad (G_{15}) = 3$$

$$\vdots \quad 3 \quad sd_{2} = 50$$

$$n_{c} = 4 \quad G$$

$$n_{c} = 9 \quad G$$

$$n_{c} = 14 \quad G$$

$$2^{2} = 4 + 15 q U$$

$$x = q + 15 b U$$

$$x = 14 + 15 c U$$

QUESTION 3. Find (2341)₅ + (4434)₅

$$(2341)_{s}$$

+ $(4434)_{s}$

QUESTION 4. Let x be number of defective mobiles in a particular store. Given,

$$x \equiv 4 \pmod{8}, x \equiv 2 \pmod{11}, x \equiv 4 \pmod{9}$$

$$. \text{ If } 0 < x < 792. \text{ find } x$$

$$-9cb below een mix's rs 1.$$

$$() (9)^{-1} \mod{8} = 3 \text{ for } 1 = 2 \text{ for } 2 = 3 \text{ for } 2 = 3 \text{ for } 2 = 3 \text{ for } 3 = 4 \text{ for } 3 = 8 \text{ for } 3 = 4 \text{ for } 3 = 8 \text{ for } 3 = 4 \text{ for } 3 = 4 \text{ for } 3 = 8 \text{ for } 3 = 2 \text{ for } 3 = 8 \text{ for } 3 = 2 \text{ for } 3 = 8 \text{ for } 3 = 3 \text{ for } 3 = 8 \text{ for } 3 = 3 \text{ for } 3 \text{ for } 3 = 3 \text{ for } 3 = 3 \text{ for } 3 = 3 \text{ for } 3 \text{ for } 3 = 3 \text{ for } 3 \text{ for } 3 = 3 \text{ for } 3 \text{ for } 3 \text{ for } 3 = 3 \text{ for } 3$$

Faculty information

MTH Discrete Mathematics Spring 2018, 1-1

Tasneem

Quiz II: MTH 213, Spring 2018

Ayman Badawi QUESTION 1. Let x be a rational number and y be an integer. Prove that x + y is a rational number. proof: let $x = \frac{x_1}{x_2}$ where $x_1 \in \mathbb{Z}$ and $x_2 \in \mathbb{Z}^*$ let $y = \frac{y_1}{y_2}$ where $y_1 \in \mathbb{Z}$ and $y_2 \in \mathbb{Z}^*$ Adding them: $x + y = \frac{x_1}{x_2} + \frac{y_1}{y_2}$ by - X1 + YN Assuming $x_2 \neq y_2$, $\frac{x_1 y_2 + y_1 x_2}{x_2 y_2}$ let $x_1 y_2 + y_1 x_2 = c \in \mathbb{Z}$ Hence $x + y = C \in \mathbb{Q}$. $\lim_{x \to y_2} x_1 = d \in \mathbb{Z}^*$

QUESTION 2. Let x be an even integer an y be an odd integer. Prove that x + y is an odd number. (i.e., show that x + y = 2m + 1 for some integer $m \in Z$)

let $x = 2n_1$ and $y = 2n_2 \pm 1$, where $n_1, n_2 \in \mathbb{Z}$ Adding: $x \pm y = 2n_1 \pm 2n_2 \pm 1$ $= 2(n_1 \pm n_2) \pm 1$ let $n_1 \pm n_2 = m \in \mathbb{Z}$ (integer \pm integer) $\pm tence \quad x \pm y = 2m \pm 1 \implies \text{odd number}.$

QUESTION 3. Convince me that there are integers $x, y \in Z$ such that 6x + 9y = 60 (do not find the values of x and y)

gcd
$$(6,9) = 3$$

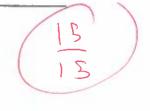
which can be written as $3 = 6c_1 + 9c_2$, since $3|60$;
multiplying by 20 gives us
 $3 \times 20 = 6(20)c_1 + 9(20)c_2$
let $20c_1 = x \in \mathbb{Z}$ and $20c_2 = y \in \mathbb{Z}$ (integer x integer)
Hence $60 = 6x + 9y$, $x & y \in xist$.

Faculty information

Tasnoen 71143.

Quiz III: MTH 213, Spring 2018

Ayman Badawi



QUESTION 1. Prove that $\sqrt{35}$ is irrational (Use contradiction) Deny. Say $\sqrt{35}$ is rational.

 $\sqrt{35} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$, gcd(a, b) = 1, and a and b are odd numbers.

$$\begin{array}{r} \text{let } a = 2m+1 \quad \text{and } b = 2k+1 \\ \Rightarrow \sqrt{35} = \frac{2m+1}{2k+1} \\ \text{Square } \Rightarrow \quad 35(4k^2+4k+1) = 4m^2+4m+1 \\ 140k^2+140k+34 = 4m^2+4m \\ \text{Toivide } by \ 4 \Rightarrow \quad 35k^2+35k+\frac{34}{4} = m^2+m \\ +\frac{1}{4}4 \\ \text{H} 34 \end{array}$$

but LHS is not integer and RHS is integer (Contradiction) Hence $\sqrt{35}$ is irrational. QUESTION 2. Prove that $(\sqrt{7} + \sqrt{5})$ is irrational (Use contradiction, and use (1), note that $\sqrt{35} = \sqrt{5}\sqrt{7}$)

Deny. Say $\sqrt{7} + \sqrt{5}$ # # is rational. i.e. $\sqrt{7} + \sqrt{5} = \frac{a}{b}$, $\sqrt{7} + \sqrt{5}$ are invational, $a \in \mathbb{Z}$, $b \in \mathbb{Z}^{*}$ Multiply. Rearrange \Rightarrow $\sqrt{7} = \frac{a}{b} - \sqrt{5}$ Hultiply b with $\sqrt{5} \Rightarrow \sqrt{5} \sqrt{7} = \sqrt{5} \frac{a}{b} - \sqrt{5} \sqrt{5}$ $\sqrt{35} = \sqrt{5} \frac{a}{b} \frac{5}{5}$

Square both sides:

$$(\sqrt{7} + \sqrt{5})^{2} = \frac{a}{b}$$

$$7 + 2\sqrt{5}\sqrt{7} + 5 = \frac{a}{b}$$

$$2\sqrt{35} = \frac{a}{b} - 12$$

$$\sqrt{35} = (\frac{a}{b} - 12) \div 2$$

$$= \frac{a - 12b}{2b}$$
on

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

let
$$a-12b=c$$
, $c\in\mathbb{Z}$
and $2b=d$ $d\in\mathbb{Z}$
 $\sqrt{35}=\frac{c}{d}$

V35 is irrational, as shown in Q1, but <u>c</u> is the rational

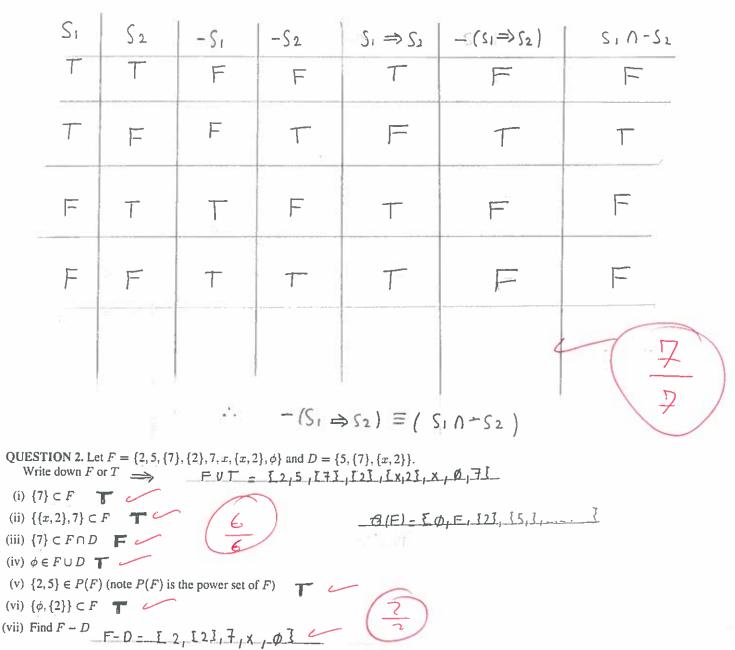
Irrational \neq Rational (contradiction) Hence, $\sqrt{7} + \sqrt{5}$ is irrational. MTH Discrete Mathematics Spring 2018, 1-1

© copyright Ayman Badawi 2018

Quiz IV: MTH 213, Spring 2018

Ayman Badawi

QUESTION 1. Use Truth table (it is not matter, use T (or 1) and F (or 0)) to convince me, without any doubt, that $\neg(S_1 \Rightarrow S_2) \equiv (S_1 \land \neg S_2)$



Faculty information

S/L

Quiz 5: MTH 213, Spring 2018

Ayman Badawi

QUESTION 1. (i)

(ii) Let $f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{1, 2, 3, 4, 5, 6\}$ such that f(1) = 2, f(2) = 3, f(3) = 1, f(4) = 5, f(5) = 6, f(6) = 4. i.e., $f = = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix}$. Find f^2 and f^3 . Write f as a composition of disjoint cycles (as in class), then find the smallest positive integer $n \ge 1$ such that $f^n = I$.

ans: f as composition of clisiont cycles:
$$(123)(450)$$

 $f^{2} = (312(45)) \in Range of f^{2}$
 $f^{3} = (123456) \in Range of f^{3}$
 $n = LCM(3, B) = 3$
So $f^{3} = I$ as shown above
(iii) Convince me that $[(-\infty, 0]] = [(-6, 4]]$
Need a bijective function st $f: f \in (-\infty, 0) - (-5, 4]$
Need a bijective function st $f: f \in (-\infty, 0) - (-5, 4]$
 $f(-\infty, 0]] = [(-6, 4]]$
 $f(-\infty, 0]] = [(-\infty, 0)] and $(-\infty, 0]] = [(-6, 4]]$
(iv) Find a. b so that the function $f: (-2, a) + (0, b)$, where $f(x) = (x - 1)^{2}$ is bijective
 $a = 1$ and $b = q$
 $so (-2, 1) \rightarrow (0, q)$
(v) Let $F = Q \cap (3, 3.002)$. Is F countable r What is $|F|^{2}$
 F is a subset of Q and Q is Countable? What is $|F|^{2}$
 F is a subset of Q and Q is Countable? Since there can be infoitiely many elements betw. two elements in F , $|F| = \infty + |Q|$.
 M
(v) Let $f: (-2,2) \rightarrow (0,4)$, $f(x) = 4 - x^{2}$. Is $f(x)$ a function? If no, then can you make a small modification on the colomain start $f(x)$ becomes a function that is one?
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ if a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ if a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ if a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ on the domain, connot be mapped to anything in the send
 $(x - domain) (x - domain) (x$$

Faculty information

S/L

Quiz 5: MTH 213, Spring 2018

Ayman Badawi

QUESTION 1. (i)

(ii) Let $f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{1, 2, 3, 4, 5, 6\}$ such that f(1) = 2, f(2) = 3, f(3) = 1, f(4) = 5, f(5) = 6, f(6) = 4. i.e., $f = = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix}$. Find f^2 and f^3 . Write f as a composition of disjoint cycles (as in class), then find the smallest positive integer $n \ge 1$ such that $f^n = I$.

ans: f as composition of clisiont cycles:
$$(123)(450)$$

 $f^{2} = (312(45)) \in Range of f^{2}$
 $f^{3} = (123456) \in Range of f^{3}$
 $n = LCM(3, B) = 3$
So $f^{3} = I$ as shown above
(iii) Convince me that $[(-\infty, 0]] = [(-6, 4]]$
Need a bijective function st $f: f \in (-\infty, 0) - (-5, 4]$
Need a bijective function st $f: f \in (-\infty, 0) - (-5, 4]$
 $f(-\infty, 0]] = [(-6, 4]]$
 $f(-\infty, 0]] = [(-\infty, 0)] and $(-\infty, 0]] = [(-6, 4]]$
(iv) Find a. b so that the function $f: (-2, a) + (0, b)$, where $f(x) = (x - 1)^{2}$ is bijective
 $a = 1$ and $b = q$
 $so (-2, 1) \rightarrow (0, q)$
(v) Let $F = Q \cap (3, 3.002)$. Is F countable r What is $|F|^{2}$
 F is a subset of Q and Q is Countable? What is $|F|^{2}$
 F is a subset of Q and Q is Countable? Since there can be infoitiely many elements betw. two elements in F , $|F| = \infty + |Q|$.
 M
(v) Let $f: (-2,2) \rightarrow (0,4)$, $f(x) = 4 - x^{2}$. Is $f(x)$ a function? If no, then can you make a small modification on the colomain start $f(x)$ becomes a function that is one?
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ is a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ if a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ if a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ if a function. To make $f(x)$ onte. Codomain should be M
 $f(x)$ on the domain, connot be mapped to anything in the send
 $(x - domain) (x - domain) (x$$

Faculty information

ID _____

MTH Discrete Mathematics Spring 2018, 1-2

Name-

all its elements.

Tasneem Batool

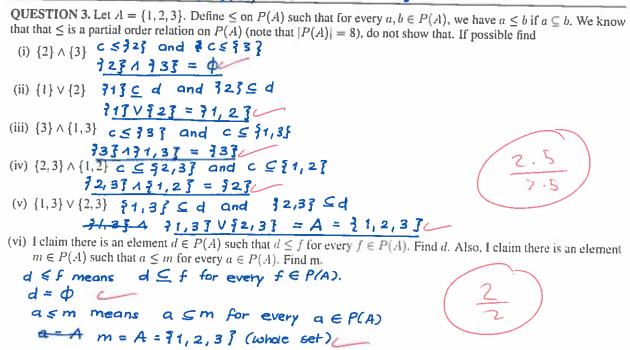
C copyright Ayman Badawi 2018

Quiz 6 & 7: MTH 213, Spring 2018

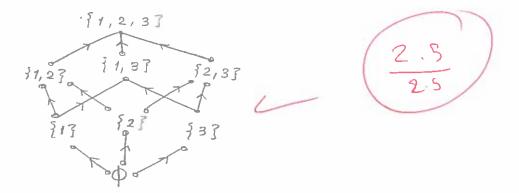
Ayman Badawi

QUESTION 1. Let A = Z. Define "=" on A so that for every $a, b \in A$, we have a = b if $6 \downarrow (a - b)$ (in A). We know that = is an equivalence relation on A (do not check). Find all equivalence classes of A. For each equivalence class, describe

Ans: • [0] = 1 ..., -12, -6, 0, 6, 12, 18, ... 3 set of all elements "equal to" 0. For 6|a-b, $a \mod 6 = b \mod 6$. In this case, the element mod 6 = 0. Give for every $a \in [0]$, a = 0, ie 6|a, ie $a \mod 6 = 0$. Vekement $\in [1]$ ·[1] = ? ..., -11, -5, 1, 7, 13, 19, ...] set of all elements "equal to 1 i.e. clement mod 6 = 1. · [2] = { ..., -10, -4, 2, 8, 14, 20, ... } set of all elements "equal to 2 ive Vac[2], a mod 6=2 • [3] = {..., -9, -3, 3, 9, 15, 21, ... } Set of all elements "equal" to 3 be Vac[3], a mod 6 = 3 .[4] = {.-, -8, -2, 4, 10, 16, 22, ...] set of all elements "equal" to 4. Vac[4], a mod 6 = 4 · [5] = 7..., -7, -1, 5, 11, 17, 23,... } set of all elements "equal" to 5. ∀a∈[5], a mod 6=5 QUESTION 2. Let $A = \{-5, 2, 5, 9, 11, 17, 21\}$. Define = on A so that for every $a, b \in A$, we have a = b if b = ca for some $c \in \{1, -1, 3, -3\}$. Convince me that = is an equivalence relation on A. Find all equivalence classes. If we view, = as a subset of $A \times A$, how many elements does = have? Ans : check : finite set A-A. Let a EA. Show "a=a" ite a=c.a. This axiom holds because for every element, in A, $a = a \cdot 1$ and $1 \in \{1, -1, 3, -3\}$. A-B. Let a, beA. Assume "a=b". Show "b=a". let a = 5 and b = -5. "a = b" means $-5 = 5 \cdot c \implies -5 = 5 \times -1$, and $-1 \in \{1, -1, 3, -3\}$. THE 5=-5.(+c) => 5-5-(-+) a b 5=-5x(-1) and -1 e { 7, -1, 3, -3 }. Hence b=q." A-B-c. let a, b, ceA. Assume "a=b" and "b=c". Show that "a=c". There are no 3 distinct elements in A for statement 1 ("a=b" and "b=c") to be true. Hence by default, statement 2 ("a=c") is true. L : "= " is an equivalence relation on A." Equivalence classes: [5]= 15,-51 [2] + 123 ~ [9]=193 [11] = { 11] [7] = { 177 V [21] =] 217 / No. of elements in "= " = 22+1+1+1+1+1



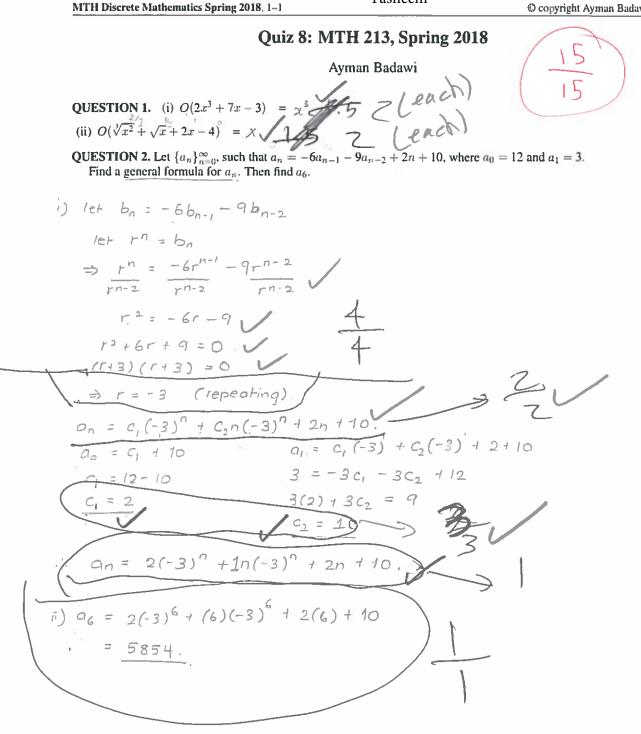
(vii) Draw the Hasse diagram of $(P(A), \leq)$. [Hint: put ϕ down. Above ϕ put all sets with 1 element (line up)...above that put ..., then connect).



Faculty information

Tasneem

© copyright Ayman Badawi 2018



Faculty information